

INTERNATIONAL WORKSHOP ON EARTH OBSERVATION FOR SEEA COMPLIANT NATURAL CAPITAL ACCOUNTING

LIFE IP 4 Nature in Greece

Prof Giorgos Mallinis

School of Rural and Surveying Engineering
Aristotle University of Thessaloniki
54124 Thessaloniki, Greece

The project LIFE-IP 4 NATURA

LIFE-IP 4 NATURA

edozoume.gr

- ✓ enhance Greece's nature conservation framework
- ✓ ensures the country's compliance with the European Union's nature legislation
- ✓ integrates actions covering all aspects of nature protection: policy, economy, society and science.

Partnership

Introduction: Background and Motivation

LULC products:

- proxies for Ecosystem Types
- key input for ES models

Large scale LULC efforts limitations:

- diverse input data
- accuracy variability
- coarse update intervals
- coarse thematic resolution
- coarse MMU

EO data:

- spatially continuous, timely and accurate information
- global, continental and regional LULC products

Technology:

- ✓ EO imagery:
 - open-access
 - medium-high spatial resolution
 - high temporal resolution
- ✓ Cloud computing platforms
- ✓ ARD

Need for

- timely, on-demand LC datasets
- end-to-end automated workflows

Challenges:

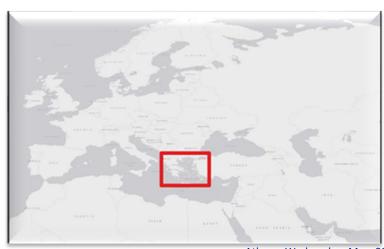
- large multi-temporal, multi-sensor datasets
- plethora of processing algorithms
- reference data

Introduction: Main objectives

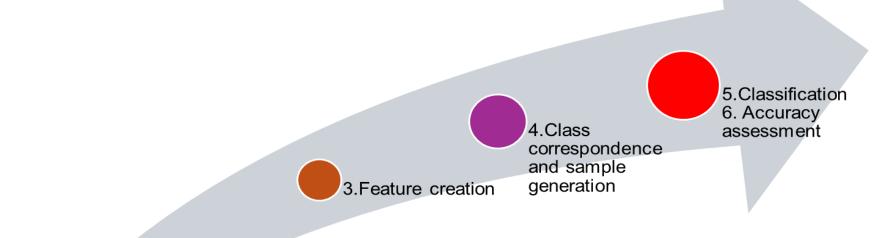
- ✓ classification workflow
- √ fine-scale LC product for ES mapping

- EU MAES, EU Biodiversity Strategy to 2020
- 21 classes (MAES 3rd level)
- 10m Sentinel-1 and Sentinel-2
- OBIA
- use of Copernicus geospatial information for collecting reference data

Additional objectives


- ✓ 2 training data extraction strategies (manual VS automated)
- √ 2 temporal compositing strategies (seasonal VS monthly)
- different features for classification

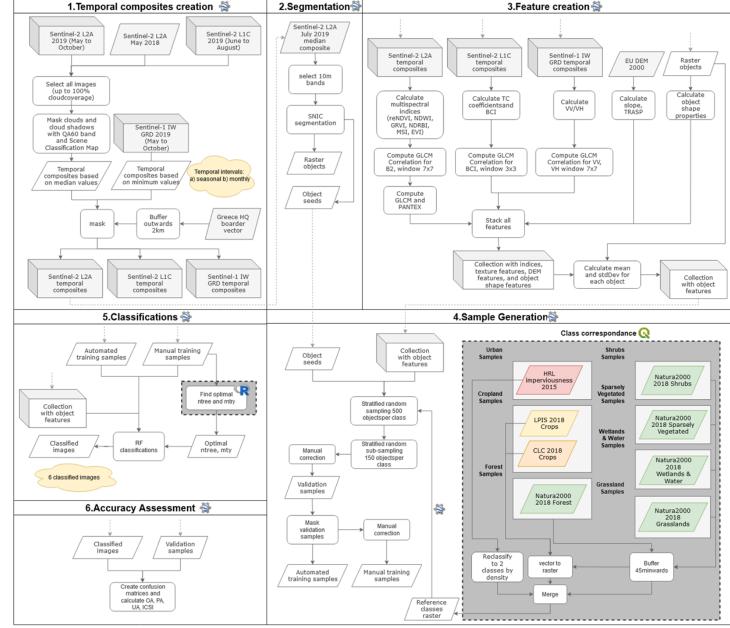
Introduction: Study area - Greece


- ~ 131,957 km²
- ~ 78% mountains
- largest coastline in EU
- highly diverse landscape
- multiple climate classification
- large Ecosystem variety
- forests ~37%

Only CORINE and Ecosystem Type Map of Europe available

1.Temporal composites creation

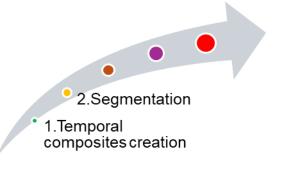
2.Segmentation


6 classifications:

	Sampling Approach	Compositing	Feature Set	Number of Features	Abbreviation
1	Manual	Seasonal	Full	144	M-S-F
2	Manual	Seasonal	Reduced*	84	M-S-R
3	Manual	Monthly	Reduced*	168	M-M-R
4	Automated	Seasonal	Full	144	A-S-F
5	Automated	Seasonal	Reduced*	84	A-S-R
6	Automated	Monthly	Reduced*	168	A-M-R

^{*}S2 L2A bands excluded

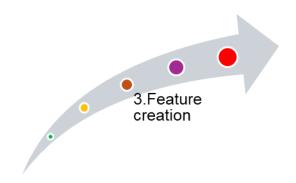
Methodology: Overall workflow



Methodology: Satellite data and preprocessing

✓ GEE data catalogue

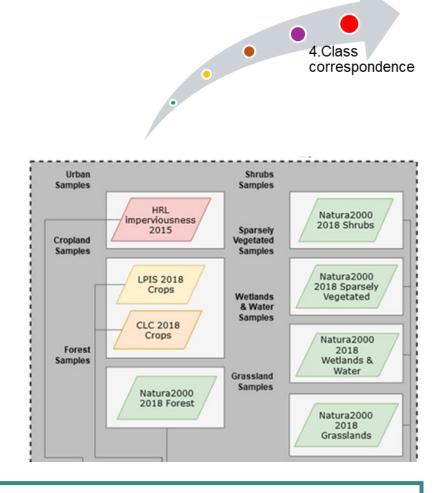
Data	Data range	Clouds, cirrus and shadows
S2 L2A	May - October 2019 + May 2018	sen2cor scene classification map
S2 L1C	June - August 2019	QA60 band & solar azimuth and zenith
S1 GRD σ_0 ascending and descending	May - October 2019	-


composite method: median

Segmentation: Simple Non-Iterative Clustering (SNIC) on 10 m S2 L2A July composite (bands B2, B3, B4, B8)

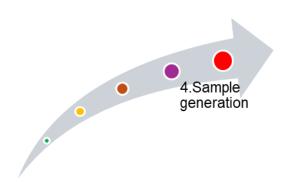
Methodology: Feature extraction

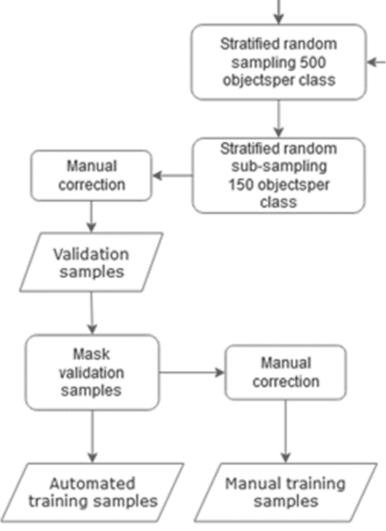
Feature Name	Statistic per Object	Brief Index Formula	Data Source
	Original Bar	nds	
-B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12	Mean, stdDev	-	S2 L2A
-VV, VH	Mean, stdDev	-	S1 IW GRD
	Spectral indi	ices	
-reNDVI	Mean, stdDev	$\frac{B8 - B5}{B8 + B5}$	S2 L2A
-NDWI	Mean, stdDev	$\frac{B3 - B8}{B3 + B8}$	S2 L2A
-GRVI	Mean, stdDev	$\frac{B3 - B4}{B3 + B4}$	S2 L2A
-NDRBI	Mean, stdDev	$\frac{B4 - B2}{B4 + B2}$	S2 L2A
-MSI	Mean, stdDev	<u>B11</u> <u>B8</u>	S2 L2A
-EVI	Mean, stdDev	$2.5 \frac{B8 - B4}{B8 + 6B4 - 7.5B2 + 1}$	S2 L2A
-TC Brightness	Mean, stdDev		S2 L1C
-TC Greenness	Mean, stdDev		S2 L1C
-TC Wetness	Mean, stdDev		S2 L1C
-BCI	Mean, stdDev		S2 L1C
-VV/VH ratio	Mean, stdDev	$\frac{VV}{VH}$	S1 IW GRD
	Texture indi	ces	111111111111111111111111111111111111111
-B2 7 x 7 GLCM Correlation	Mean		S2 L2A
-PANTEX	Mean		S2 L2A
-BCI 3 x 3 GLCM Correlation	Mean		S2 L1C
-VV 7 x 7 GLCM Correlation	Mean		S1 IW GRD
VH 7 x 7 GLCM Correlation	Mean		S1 IW GRD



Feature Name	Statistic per Object	Brief Index Formula	Data Source
	Object shape pr	roperties	
-Perimeter, -Area		•	
-Form factor		$\frac{4\pi A}{P}$	
-Square pixel metric		$1 - \frac{4\sqrt{A}}{P}$	
-Fractal dimension		$2\frac{\ln(\frac{p}{4})}{\ln A}$	
-Shape index		$\frac{P}{4\sqrt{A}}$	
	Ancillary a	lata	
-Elevation, -Slope, -TRASP	Mean		EU-DEM

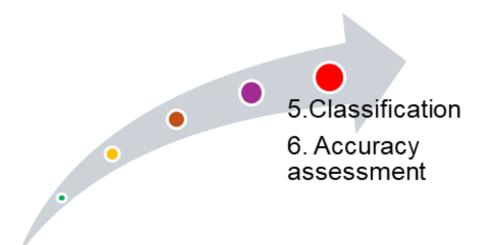
Methodology: Classification scheme


MAES Ecosystem Category (Level 1)	MAES Ecosystem Category (Level 2)	Ecosystem Types for Mapping and Assessment in Greece (Level 3)	Code	Data Source	Data Source Classes
	Urban	Dense to medium dense Urban Fabric (IM.D. 30–100%)	1.1.1	HRL	=> 30%
		Low density Urban Fabric (IM.D. 0-30%)	1.1.2	HRL	<30%
	Cropland	Arable land	2.1.1	LPIS, CLC	LPIS: 40, CLC: 2.1
	Cropiana	Permanent crops	2.2.1	LPIS, CLC	LPIS: 50, 60, 70, CLC: 2.2
		Temperate deciduous forests	3.1.1	N2K	9110, 9130, 9140, 9150, 9180, G91K, G91
		Mediterranean deciduous forests	3.1.2	N2K	91M0, 9280, 9250, 9310, 9350, 9260, 925
		Floodplain forests (Riparian forest/Fluvial forest)	3.2.1	N2K	92A0, 92C0, 92D0, 91E0, 91F0
	Woodland and forest	Temperate mountainous coniferous forests	3.3.1	N2K	9530, 951B, 91BA, 91CA, 95A0, 9410
		Mediterranean coniferous forests	3.3.2	N2K	2270, 9540, 9560, 9290
		Mediterranean sclerophyllous forests	3.4.1	N2K	9340, 934A, 9320, 9370
		Mixed Forest	3.5.1	N2K	9270
Terrestrial	Grassland	Grasslands	4.1.1	N2K	6110, 6170, 6220, 6230, G628, 6290, 624 62D0, 6420, 6430, G645, 6510, 651A, 10
Terrestriai		Moors and heathland	5.1.1	N2K	4060, 4090, 5360, 5420, 5430
	Heathland and shrub	Sclerophyllous vegetation	5.2.1	N2K	2250, 5110, 5150, 5160, 5210, 5230, 531 5330, 5340, 5350
		Sparsely vegetated areas	6.1.1	N2K	8130, 8140, 8210, 8220, 8230, 8310, 832 8330, 2240, 2260, 9620, 8250
	Sparsely vegetated	Beaches, dunes, sands	6.2.1	N2K	1210, 1240, 1410, 2110, 2120, 2220, 223 2210, 21B0
		Bare rocks, burnt areas, mines, dump, land without current use	6.3.1	N2K	1030
	Wetlands	Inland freshwater and saline marshes	7.1.1	N2K	72A0, 72B0, 2190, 1310, 1410, 1420, 14: 1510, 1440
	caures	Peat bogs	7.2.1	N2K	7140, 7210, 7220, 7230
Marine	Marine	Marine	7.3.1	N2K	1110, 1120, 1130, 1150, 1160, 1170, 118 1310
Freshwater	Rivers and lakes	Rivers and lakes	8.1.1	N2K	3130, 3140, 3150, 3170, 3240, 3250, 326 3280, 3290, 3190



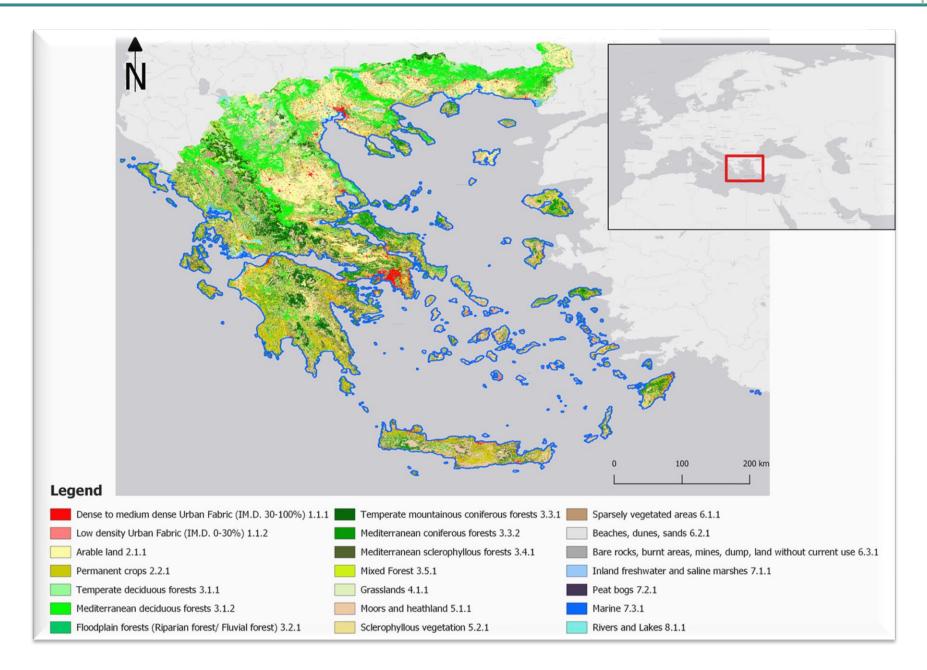
It was challenging to harmonize the ecologically- interpreted classes with the LULC classification schemes of different reference data sets.

Methodology: Reference data



manual sampling approach
=
manually correcting automated samples

Methodology: Classification and accuracy assessment



- Random Forests
- confusion matrix & derived standard accuracy measures
 - OA
 - PA
 - UA
 - Individual Classification Success Index (ICSI)

$$ICSI = UA\%_i + PA\%_i - 100$$

Results

Results - Accuracy

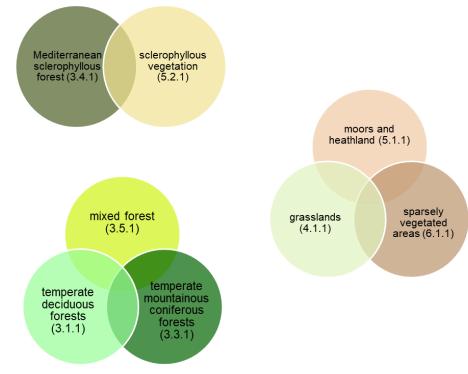
11.9		M-S-F			M-S-R		1	M-M-F	2		A-S-F		ļ	A-S-R			A-M-	R
Class	PA	UA	ICSI															
1.1.1	84	83	67	82	84	66	82	85	67	96	60	56	96	59	55	96	59	55
1.1.2	93	80	73	93	81	74	93	83	76	45	92	37	43	92	35	43	92	35
2.1.1	90	87	77	89	86	75	91	88	79	91	79	70	91	78	69	93	80	73
2.2.1	80	81	61	84	85	69	84	86	70	83	74	57	84	73	57	86	78	64
3.1.1	85	82	67	86	81	67	91	84	75	89	74	63	87	74	61	90	81	71
3.1.2	77	79	56	75	79	54	79	78	57	80	66	46	79	66	45	80	65	45
3.2.1	68	64	32	72	60	32	74	81	55	65	73	38	68	73	41	67	75	42
3.3.1	82	77	59	84	77	61	83	76	59	81	85	66	79	82	61	79	83	62
3.3.2	81	74	55	84	79	63	84	79	63	85	74	59	85	78	63	83	79	62
3.4.1	37	62	-1	43	67	10	48	68	16	55	63	18	57	61	18	57	60	17
3.5.1	58	78	36	63	80	43	60	78	38	58	72	30	57	71	28	69	76	45
4.1.1	75	75	50	76	76	52	77	75	52	78	75	53	78	76	54	79	75	54
5.1.1	48	61	9	49	63	12	51	62	13	52	51	3	55	52	7	55	56	11
5.2.1	46	39	-15	49	44	-7	46	44	-10	48	55	3	48	54	2	49	53	2
6.1.1	87	72	59	88	73	61	90	75	65	84	78	62	83	78	61	86	78	64
6.2.1	62	76	38	69	75	44	71	77	48	69	65	34	70	63	33	70	62	32
6.3.1	90	83	73	91	84	75	88	82	70	38	92	30	36	97	33	35	96	31
7.1.1	81	76	57	78	76	54	89	82	71	87	85	72	86	85	71	88	86	74
7.2.1	81	100	81	78	100	78	81	100	81	66	100	66	66	100	66	63	100	63
7.3.1	98	99	97	97	99	96	97	99	96	98	100	98	99	100	99	97	100	97
8.1.1	93	98	91	95	98	93	95	98	93	97	98	95	95	99	94	96	99	95
OA		77.33			78.67			79.55			74.89			74.61			75.64	

	Sampling Approach	Compositing	Feature Set	Number of Features	Abbreviation
1 M	lanual	Seasonal	Full	144	M-S-F
2 M	lanual	Seasonal	Reduced*	84	M-S-R
3 M	lanual	Monthly	Reduced*	168	M-M-R
4 A	utomated	Seasonal	Full	144	A-S-F
5 A	utomated	Seasonal	Reduced*	84	A-S-R
6 Aı	utomated	Monthly	Reduced*	168	A-M-R

Results - Accuracy

		M-S-F			M-S-R]	M-M-F	2		A-S-F			A-S-R			A-M-	R
Class	PA	UA	ICSI															
1.1.1	84	83	67	82	84	66	82	85	67	96	60	56	96	59	55	96	59	55
1.1.2	93	80	73	93	81	74	93	83	76	45	92	37	43	92	35	43	92	35
2.1.1	90	87	77	89	86	75	91	88	79	91	79	70	91	78	69	93	80	73
2.2.1	80	81	61	84	85	69	84	86	70	83	74	57	84	73	57	86	78	64
3.1.1	85	82	67	86	81	67	91	84	75	89	74	63	87	74	61	90	81	71
3.1.2	77	79	56	75	79	54	79	78	57	80	66	46	79	66	45	80	65	45
3.2.1	68	64	32	72	60	32	74	81	55	65	73	38	68	73	41	67	75	42
3.3.1	82	77	59	84	77	61	83	76	59	81	85	66	79	82	61	79	83	62
3.3.2	81	74	55	84	79	63	84	79	63	85	74	59	85	78	63	83	79	62
3.4.1	37	62	-1	43	67	10	48	68	16	55	63	18	57	61	18	57	60	17
3.5.1	58	78	36	63	80	43	60	78	38	58	72	30	57	71	28	69	76	45
4.1.1	75	75	50	76	76	52	77	75	52	78	75	53	78	76	54	79	75	54
5.1.1	48	61	9	49	63	12	51	62	13	52	51	3	55	52	7	55	56	11
5.2.1	46	39	-15	49	44	-7	46	44	-10	48	55	3	48	54	2	49	53	2
6.1.1	87	72	59	88	73	61	90	75	65	84	78	62	83	78	61	86	78	64
6.2.1	62	76	38	69	75	44	71	77	48	69	65	34	70	63	33	70	62	32
6.3.1	90	83	73	91	84	75	88	82	70	38	92	30	36	97	33	35	96	31
7.1.1	81	76	57	78	76	54	89	82	71	87	85	72	86	85	71	88	86	74
7.2.1	81	100	81	78	100	78	81	100	81	66	100	66	66	100	66	63	100	63
7.3.1	98	99	97	97	99	96	97	99	96	98	100	98	99	100	99	97	100	97
8.1.1	93	98	91	95	98	93	95	98	93	97	98	95	95	99	94	96	99	95
OA		77.33			78.67	-		79.55			74.89	10		74.61			75.64	

- monthly instead of seasonal improved 13 classes
- low accuracies for 5.x.x and 3.4.1 in all classifications

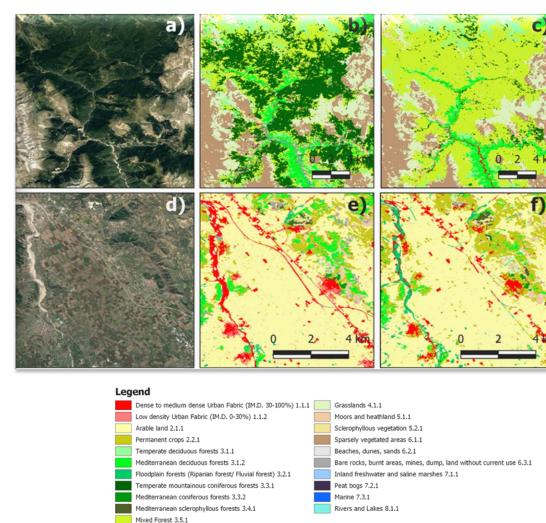


Results - Confusion matrix

✓ Confusion matrix for best performing classification (M-M-R)

										Cla	ssifica	tion										
		1.1.1	1.1.2	2.1.1	2.2.1	3.1.1	3.1.2	3.2.1	3.3.1	3.3.2	3.4.1	3.5.1	4.1.1	5.1.1	5.2.1	6.1.1	6.2.1	6.3.1	7.1.1	7.2.1	7.3.1	8.1
1	.1.1	82	10		1												1	6				
1.	.1.2	5	93				1	1									1					
2	.1.1	1	1	91	1		1	1					1				2	1	1			
2	.2.1		1	3	84		1	2		2	3				3							
3.	.1.1					91	5		1		1	1	1			1						
3.	.1.2				1	7	79	2	1		3	3	1	1	3							
3	.2.1	2	2	3	1		1	74							2		2		13			
3.	3.1		1						83	5	1	6	1		3							
3.	.3.2			1	1		1		3	84	2			1	5	2						
3	4.1		1	1	4		1	2	4	7	48			6	27			1				
3.	.5.1					14			21			60	1		4							
4	.1.1			1	1		3						77	6	2	10	1					
5.	.1.1		1	3	1	1	1			1	1		14	51	4	14		8				
5.	.2.1			1	1		8	1	5	6	13	1	3	7	46	6		1				
6.	.1.1								1				3	5		90		1				1
6.	.2.1		1					5									71	2	22			
6	.3.1	6	1											2		1	1	88	1			
7.	.1.1							2						1	1		5	1	89			
7	.2.1							3					13						3	81		
7.	.3.1																		3		97	
8	.1.1							1											5			95

✓ in all classifications, confusion between:

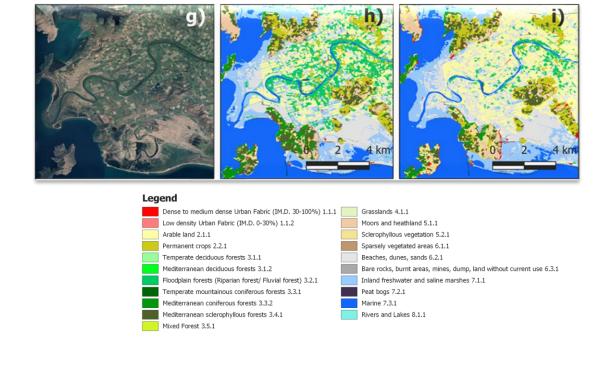

Results - Visual assessment

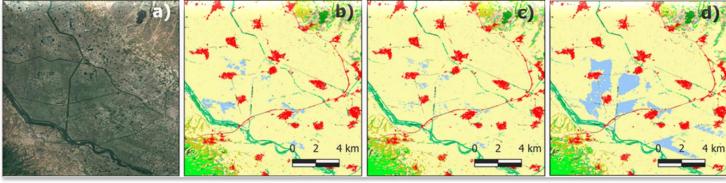
✓ Confusion matrix for best performing classification (M-M-R)

- minor differences between different feature sets
- considerable differences between different sampling techniques

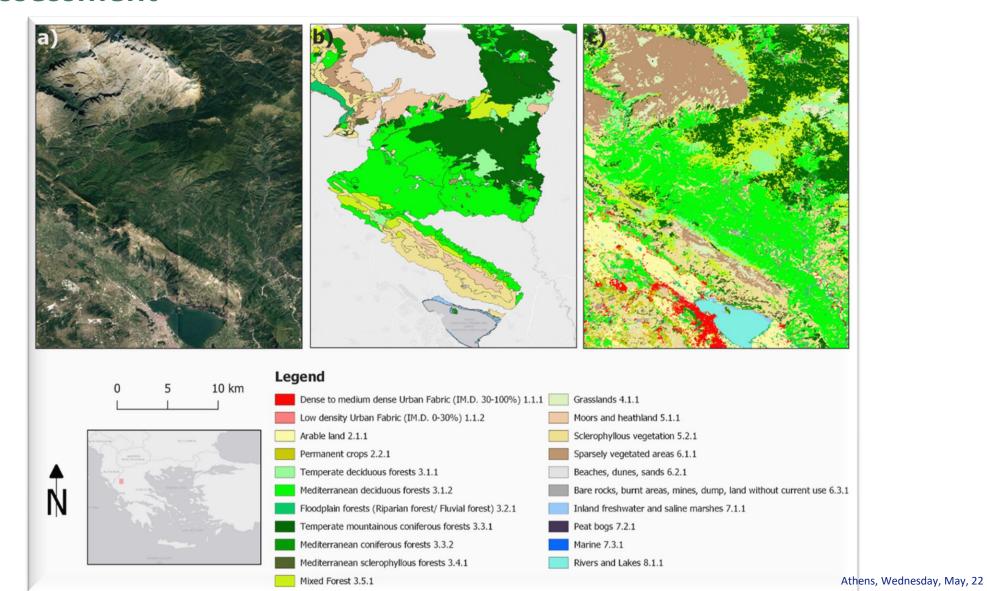
automated sampling:

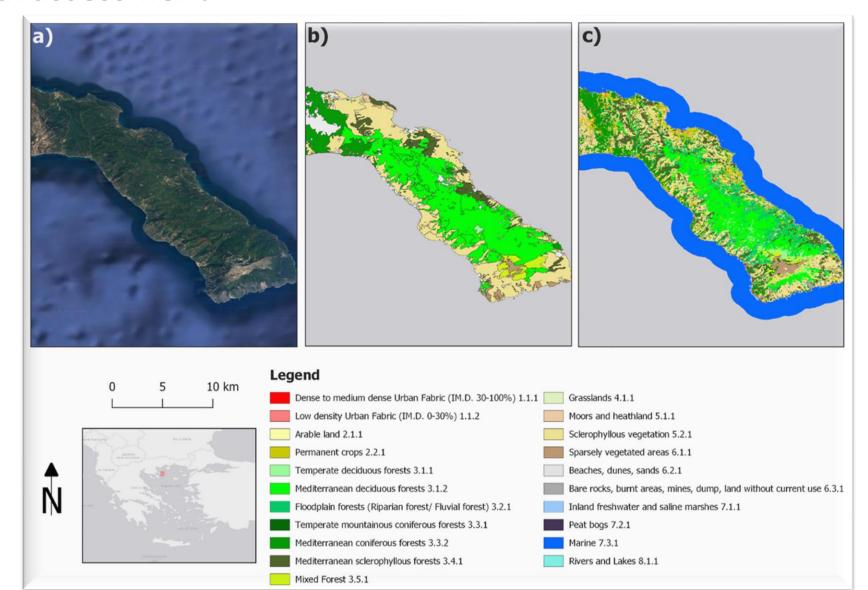
overestimation of mixed forests (5.3.1) and Mediterranean coniferous forests (3.3.2), underestimation of low density urban fabric (1.1.2)

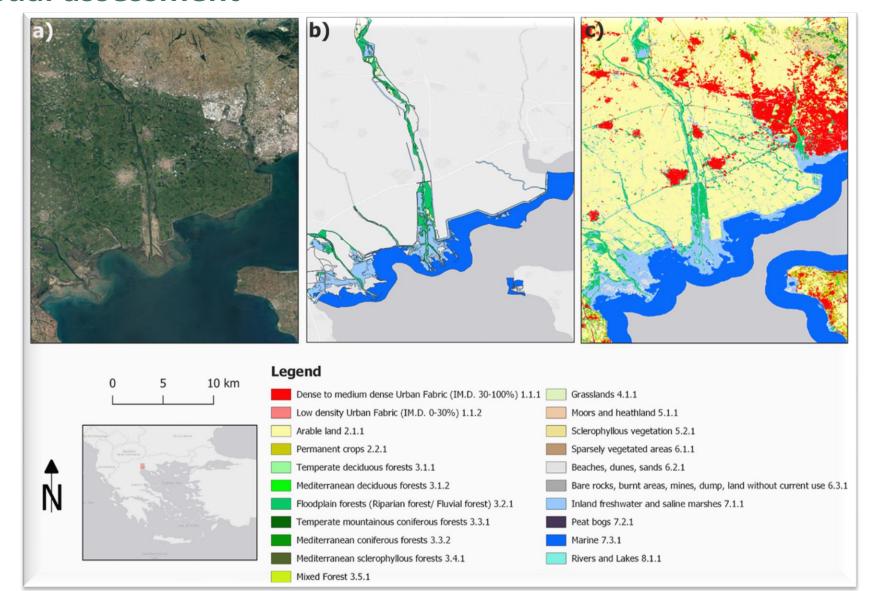


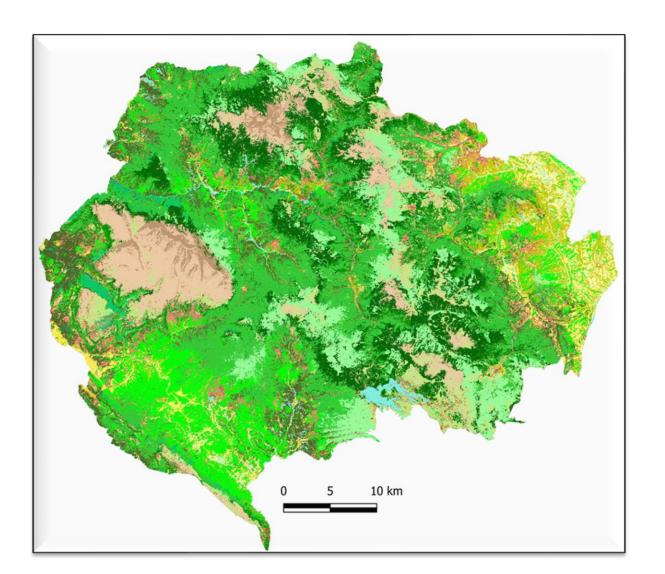

Results - Visual assessment

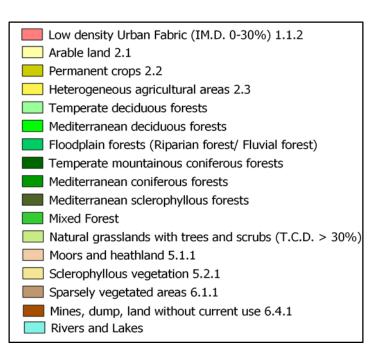
manual sampling:

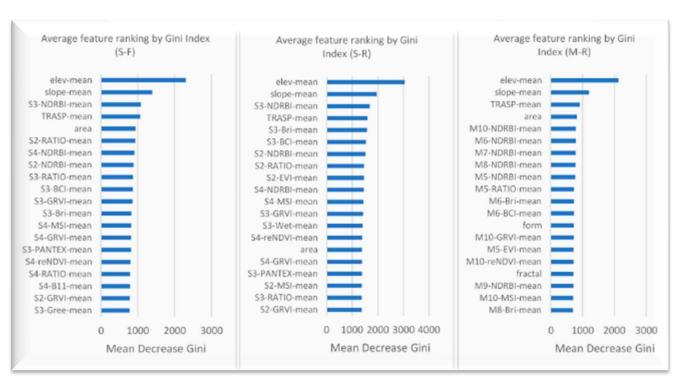

arable land (2.1.1) was frequently classified as floodplain forests (3.2.1)


monthly features instead of seasonal created errors in high-moisture agriculture areas









Results - Variable importance

- ✓ Most important variables
- topographic features ——— elevation, slope, TRASP
 - object properties area, form factor, fractal
 - ❖ SAR VV/VH ratio
 - only SWIR (B11) S2 spectral bands

Discussion

First national scale LC mapping

- √ complex classification scheme
- ✓ ecological-relevant classes

OBIA:

- ✓ accounts for geolocation offset
- ✓ accounts for cloud masking errors
- ✓ exploitation of object

properties

RF:

✓ ability to handle highly correlated multidimensional data

Lower accuracies in classes covering different ecosystem types but similar spectral responses → ecological modeling needed

Contribution

- end-to-end automated workflow, for annual LC mapping in Greece
- ecosystem condition and ES mapping and assessment
- roadmap for the further development

Key findings

- EO data alone are not adequate for predicting and mapping the complex Mediterranean landscape
- automated sampling not so efficient in complex and ecological-relevant classification schemes

Published paper & code

https://doi.org/10.3390/rs12203303

https://github.com/n-verde/LIFE-IP_4_NATURA

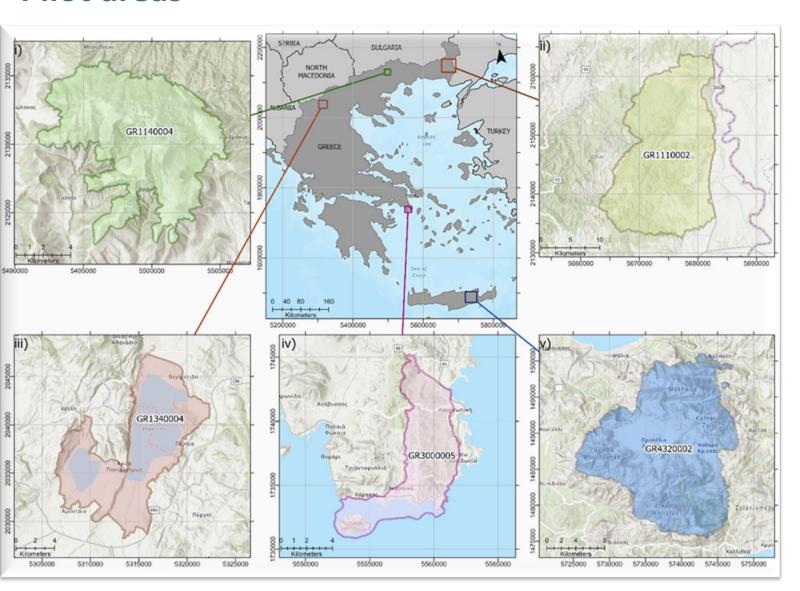
Articl

National Scale Land Cover Classification for Ecosystem Services Mapping and Assessment, Using Multitemporal Copernicus EO Data and Google Earth Engine

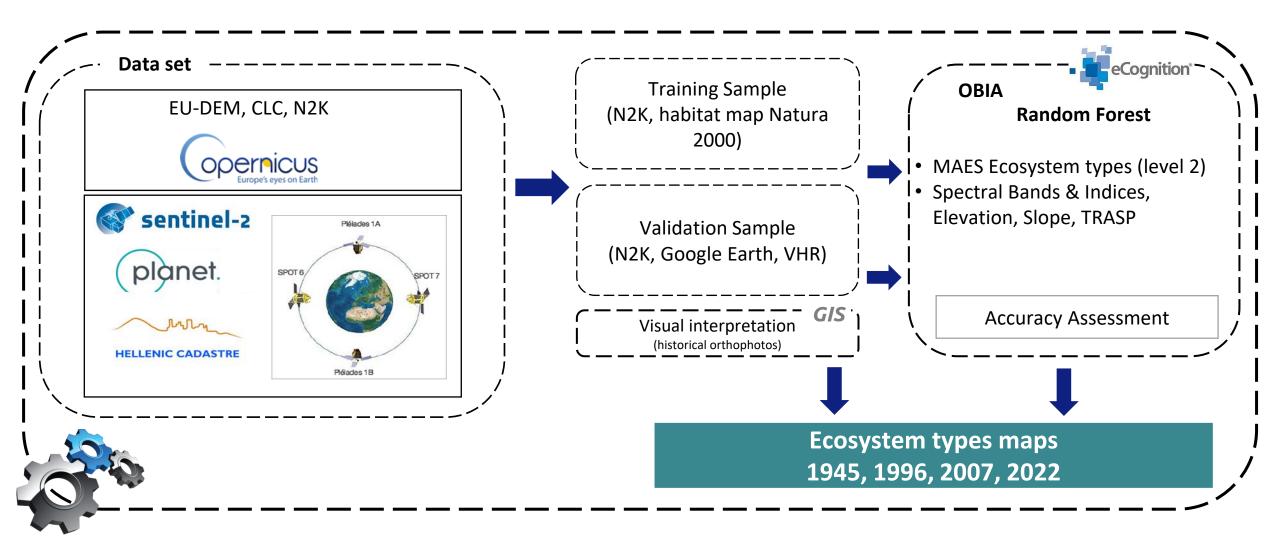
Natalia Verde ^{1,2}, Ioannis P. Kokkoris ³, Charalampos Georgiadis ¹, Dimitris Kaimaris ¹, Panayotis Dimopoulos ³, Ioannis Mitsopoulos ⁴ and Giorgos Mallinis ^{1,2,*}

- School of Rural and Surveying Engineering, Laboratory of Photogrammetry and Remote Sensing Unit (PERS lab), The Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; nverde@auth.gr (N.V.); harrisg@auth.gr (C.G.); kaimaris@auth.gr (D.K.)
- Forest Remote Sensing and Geospatial Analysis Laboratory, Democritus University of Thrace, 68200 Orestiada, Greece
- Department of Biology, Laboratory of Botany, University of Patras, 26504 Patras, Greece; ipkokkoris@upatras.gr (LP.K.); pdimopoulos@upatras.gr (P.D.)
- Ministry of Environment & Energy, Directorate of Biodiversity and Natural Environment Management, 11526 Athens, Greece; i.mitsopoulos@prv.ypeka.gr
- Correspondence: gmallin@auth.gr; Tel.: +30-2310-996085

Received: 6 September 2020; Accepted: 7 October 2020; Published: 11 October 2020


Abstract: Land-Use/Land-Cover (LULC) products are a common source of information and a key input for spatially explicit models of ecosystem service (ES) supply and demand. Global, continental, and regional, readily available, and free land-cover products generated through Earth Observation (EO) data, can be potentially used as relevant to ES mapping and assessment processes from regional to national scales. However, several limitations exist in these products, highlighting the need for timely land-cover extraction on demand, that could replace or complement existing products. This study focuses on the development of a classification workflow for fine-scale, object-based land cover mapping, employed on terrestrial ES mapping, within the Greek terrestrial territory. The processing was implemented in the Google Earth Engine cloud computing environment using 10 m spatial resolution Sentinel-1 and Sentinel-2 data. Furthermore, the relevance of different training data extraction strategies and temporal EO information for increasing the classification accuracy was also evaluated. The different classification schemes demonstrated differences in overall accuracy ranging from 0.88% to 4.94% with the most accurate classification scheme being the manual sampling/monthly feature classification achieving a 79.55% overall accuracy. The classification results suggest that existing LULC data must be cautiously considered for automated extraction of training samples, in the case of new supervised land cover classifications aiming also to discern complex vegetation classes. The code used in this study is available on GitHub and runs on the Google Earth Engine web platform.

Keywords: remote sensing; seasonal; Random Forests; OBIA; machine learning; big data; multispectral; radar; GEE; object


Pilot areas

- ✓ GR1140004 Koryfes Orous Falakro
- ✓ GR1110002 Dasos Dadias Soufli
- ✓ GR1340004 Limnes Vegoritida Petron
- ✓ GR 4320002 Dikti
- ✓ GR 3000005 Sounio

Workflow

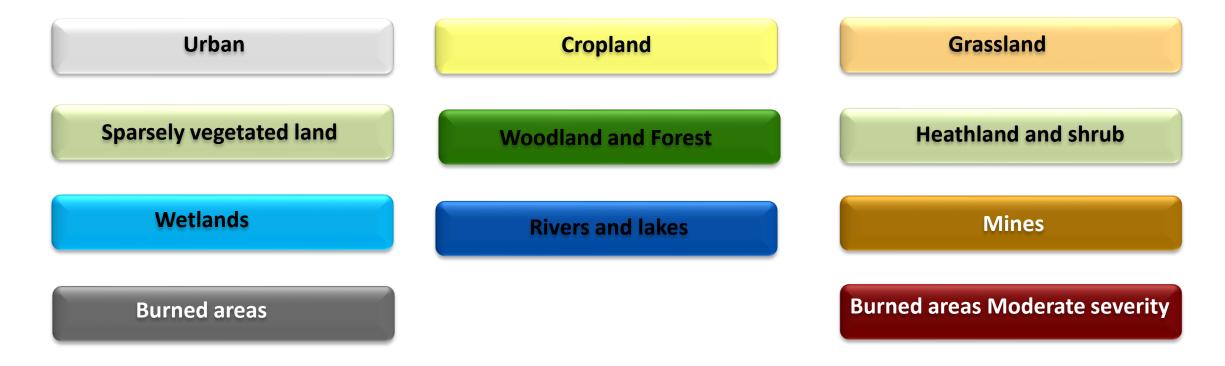
Data inputs

Geospatial data

- ✓ European Digital Elevation Model, EU-DEM
- ✓ CORINE Land Cover (CLC)
- ✓ Natura 2000 (N2K)
- ✓ Habitat map of Natura 2000 terrestrial areas (National Cadastre and Mapping Agency) (1:5000)

Satellite data

✓ Sentinel 2 L2A	August 2022	10m
✓ PlanetScope	August 2022	3m


Historical orthophotos

✓ Orthophotos	1945	1m
✓ Orthophotos	1996-1998	1m
✓ Large Scale Orthophotos	2007	0,5m

Classification Scheme

✓ 11 classes based on MAES-Level 2 ecosystem types

Reference Data

Training Sample

- ✓ Natura 2000 (N2K)
- ✓ Habitat map of Natura 2000 by the National Cadastre and Mapping Agency (1:5000)

Validation Sample

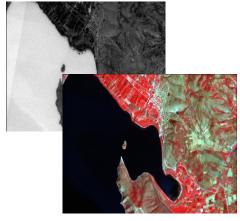
- ✓ Google Earth
- ✓ VHR IMAGE 2018

Feature Extraction

Spectral Bands

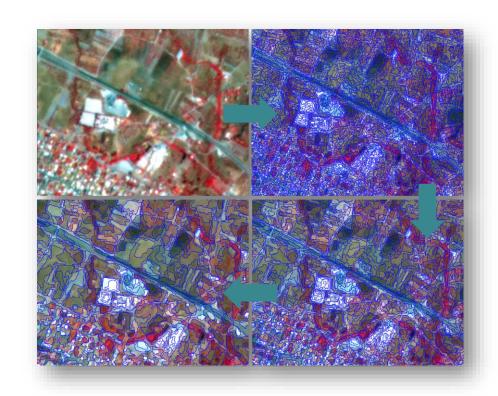
- ✓ Blue
- **✓** Green
- **✓** Red
- ✓ Near Infrared NIR

- **✓** NDWI
- ✓ NDSI



Topography

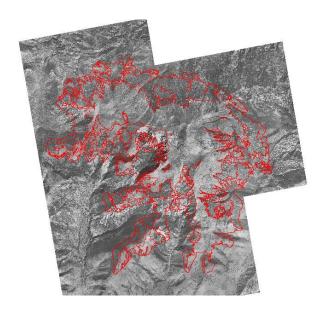
- Elevation
- ✓ Slope
- **✓** TRASP

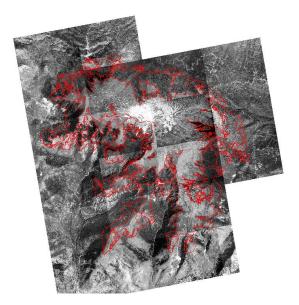


Classification

✓ Object Based Image Analysis-OBIA

Segmentation level	Scale parameter	Shape criterion	Compactness criterion	Image Layer weights
1	20	0,1	0,5	1,1,1,1
2	40	0,1	0,5	1,1,1,1
3	80	0,1	0,5	1,1,1,1

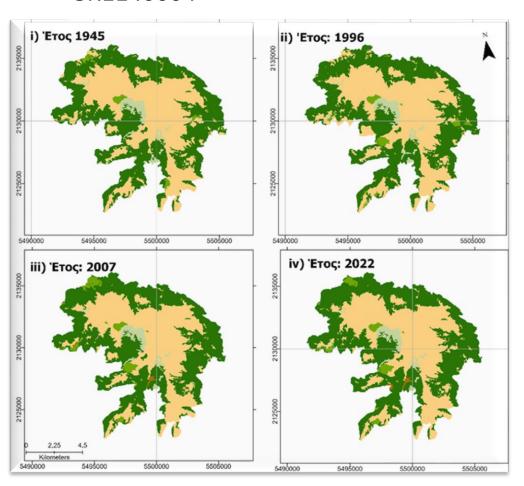




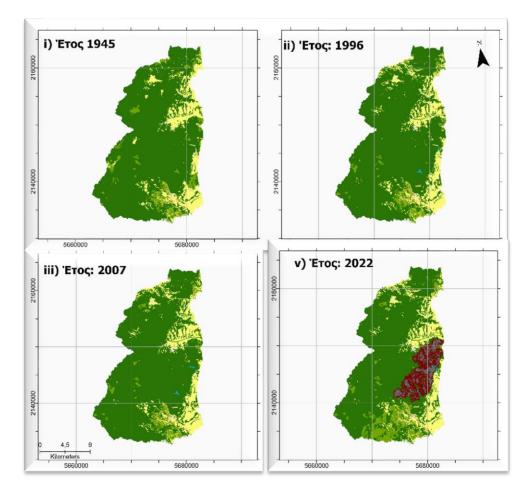
Visual Image Interpretation

- ✓ Air photos 1945 -1996 : Manual interpretation on screen digitising
- ✓ Air imagery 2007: Manual interpretation on screen digitising

1996



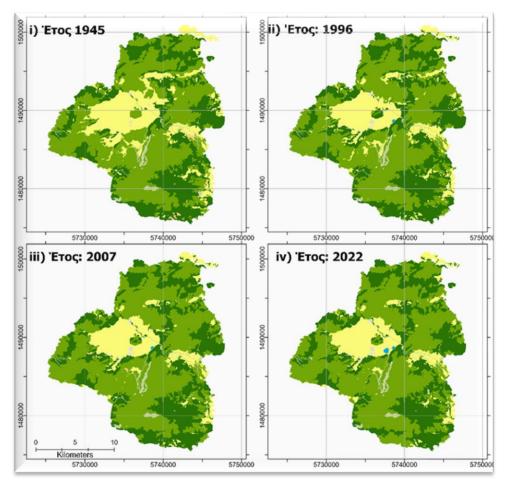
2007



Ecosystem types maps

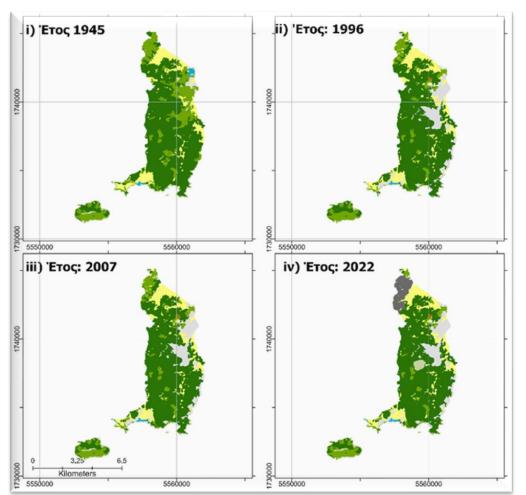
✓ GR1140004

✓ GR1110002

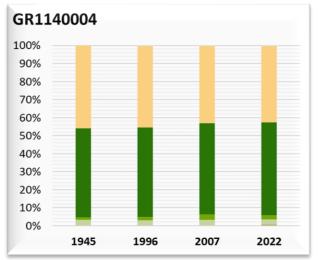


Ecosystem types maps

✓ GR1340004



Ecosystem types maps



Urban
Cropland
Grassland
Woodland and Forest
Heathland and shrub
Sparsely vegetated land
Wetlands
Rivers and lakes
Mines
Burned areas
Burned areas Moderate severity

Ecosystem types analysis

GR4320002

100%

90%

80%

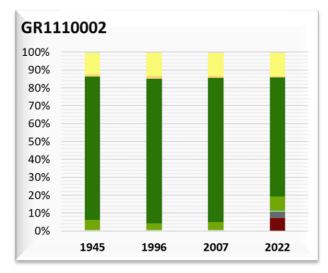
70%

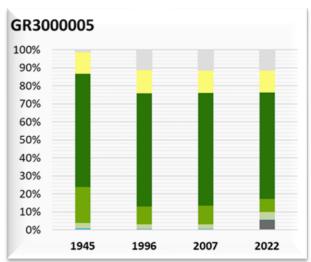
60%

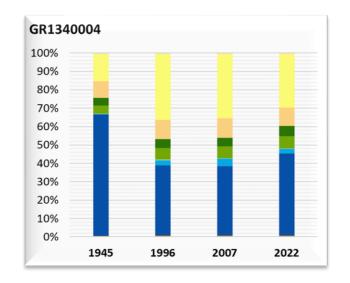
50%

40%

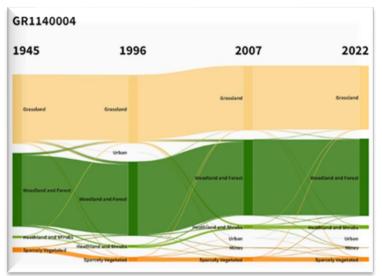
30%

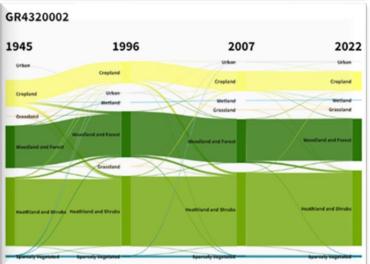

20%

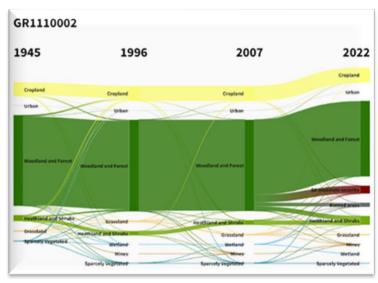

10%

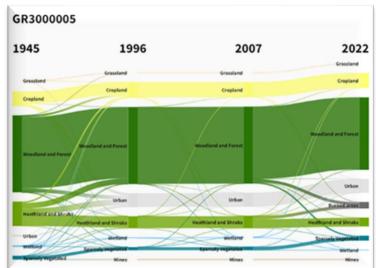

1945

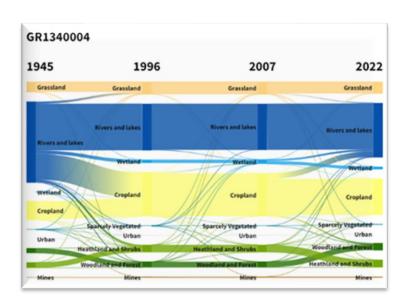
2022

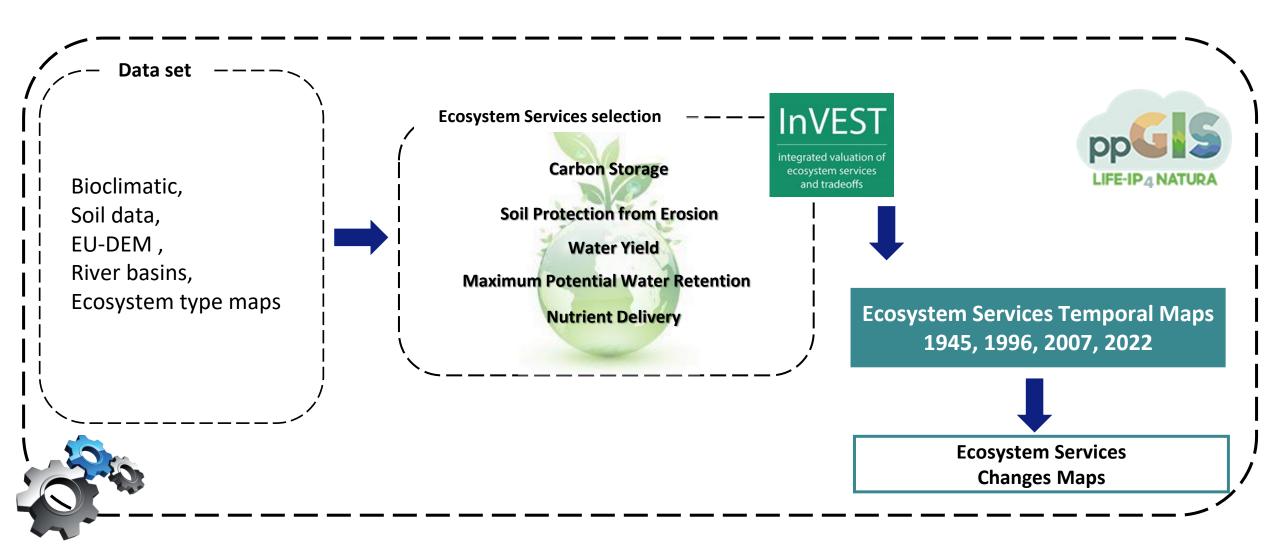

Urban
Cropland
Grassland
Woodland and Forest
Heathland and shrub
Sparsely vegetated land
Wetlands
Rivers and lakes
Mines
Burned areas
Burned areas Moderate severity


2007


1996




Ecosystem types analysis



Urban
Cropland
Grassland
Woodland and Forest
Heathland and shrub
Sparsely vegetated land
Wetlands
Rivers and lakes
Mines
Burned areas
Burned areas Moderate severity

Workflow

Data sources

Bioclimatic Data

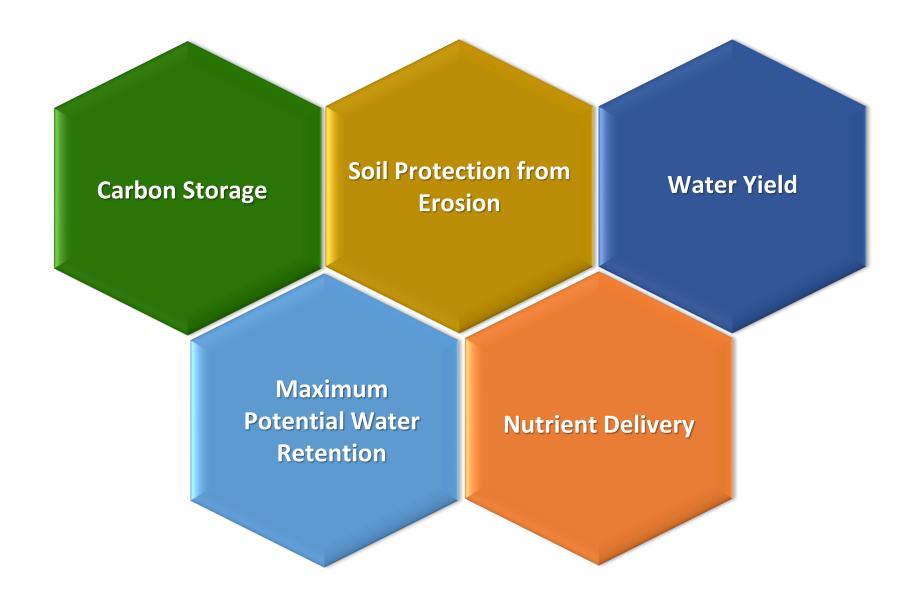
✓ CHELSA

Soil Data

- European Soil Data Centre ESDAC
- ✓ World Soil Information ISRIC

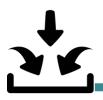
Geospatial Data

- ✓ European Digital Elevation Model, EU-DEM
- ✓ Joint Research Centre- JRC


LULC

Ecosystem type maps(1945-1996-2007-2022)

Ecosystem Services


Ecosystem Services

Carbon Storage

integrated valuation of ecosystem services and tradeoffs

Input data

✓ LULC

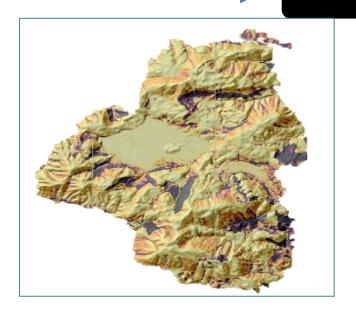
- ✓ C_Above
- ✓ C_Below
- ✓ C_Soil
- ✓ C_Dead

Ecosystem Services

Soil Protection

Input data

$$USLE_i = R_i \cdot K_i \cdot LS_i \cdot C_i \cdot P_i$$



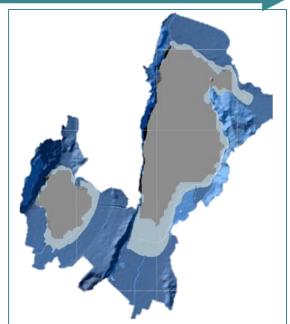
Output data

- ✓ DEM
- ✓ Soil Erodibility

- ✓ LULC
- ✓ Biophysical Table
- Erosivity
- Watersheds
- ✓ Threshold Flow Accumulation
- ✓ Borselli K Parameter
- ✓ Maximum L Value

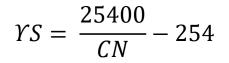
Ecosystem Services

Water Yield


Input data

$$Y(x) = \left(1 - \frac{AET_{(x)}}{P(x)}\right) \times P(x)$$

- ✓ Precipitation
- ✓ LULC
- Evapotranspiration
- ✓ Root Restricting Layer Depth
- ✓ Plant Available Water Content
- ✓ Z Parameter
- ✓ Watersheds
- ✓ Biophysical parameters

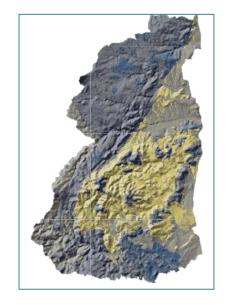


Ecosystem Services

Water Retention

Input data

CNII = $6 \times iVEG + 9 \times iPERM + 3 \times iSLOPE + 10$

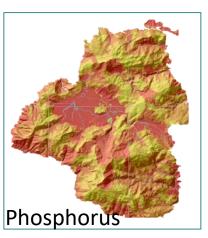

Output data

✓ Drainage Capacity

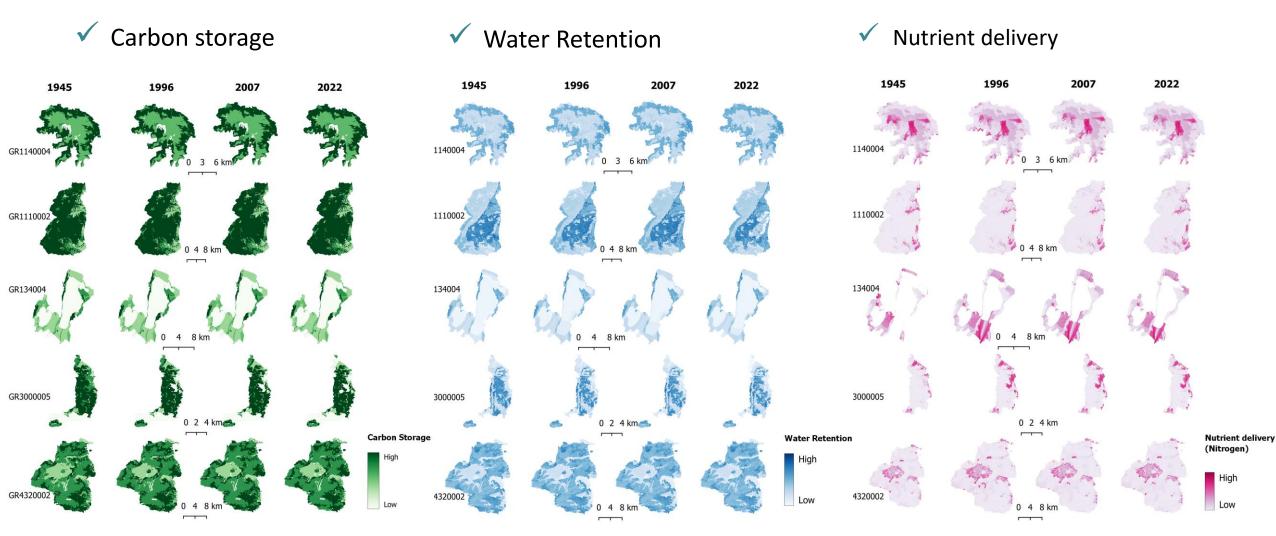
Ecosystem Services

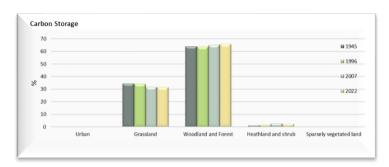
Nutrient Delivery

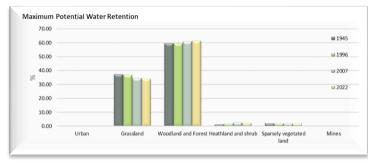
Input data

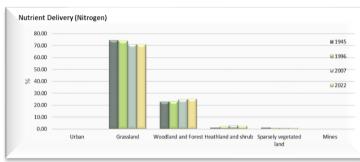

 $X_{exp} = load_{surf,l} x NBR_{surfi} + load_{sub,l} x NBR_{subi}$

Output data

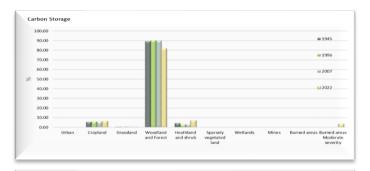

- ✓ DEM
- ✓ LULC
- ✓ Nutrient Runoff Proxy
- Watersheds
- ✓ Biophysical parameters
- ✓ Threshold Flow Accumulation
- ✓ Borselli K Parameter

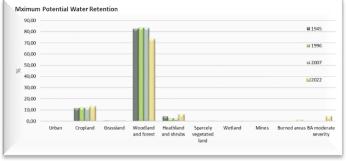

Ecosystem Services maps

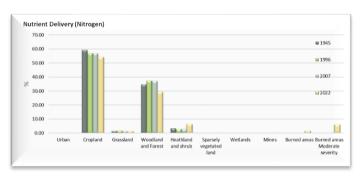


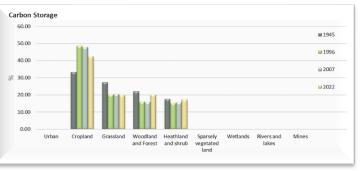


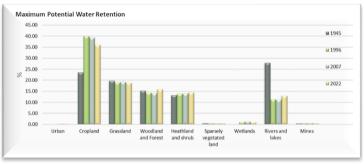
Ecosystem Services analysis

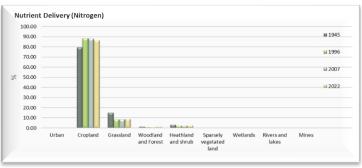

✓ GR1140004



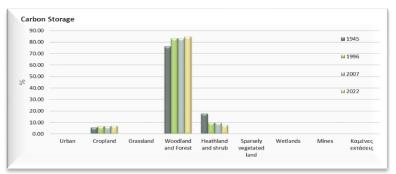


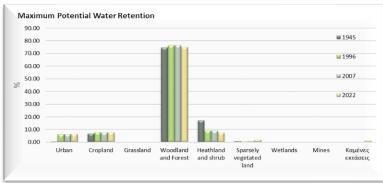

✓ GR1110002

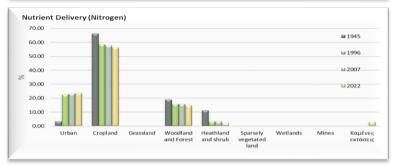




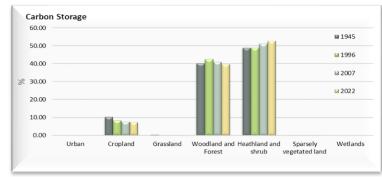
GR1340004

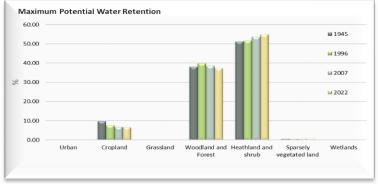


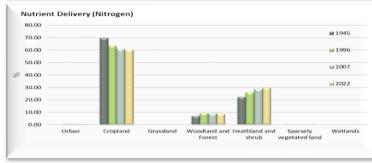


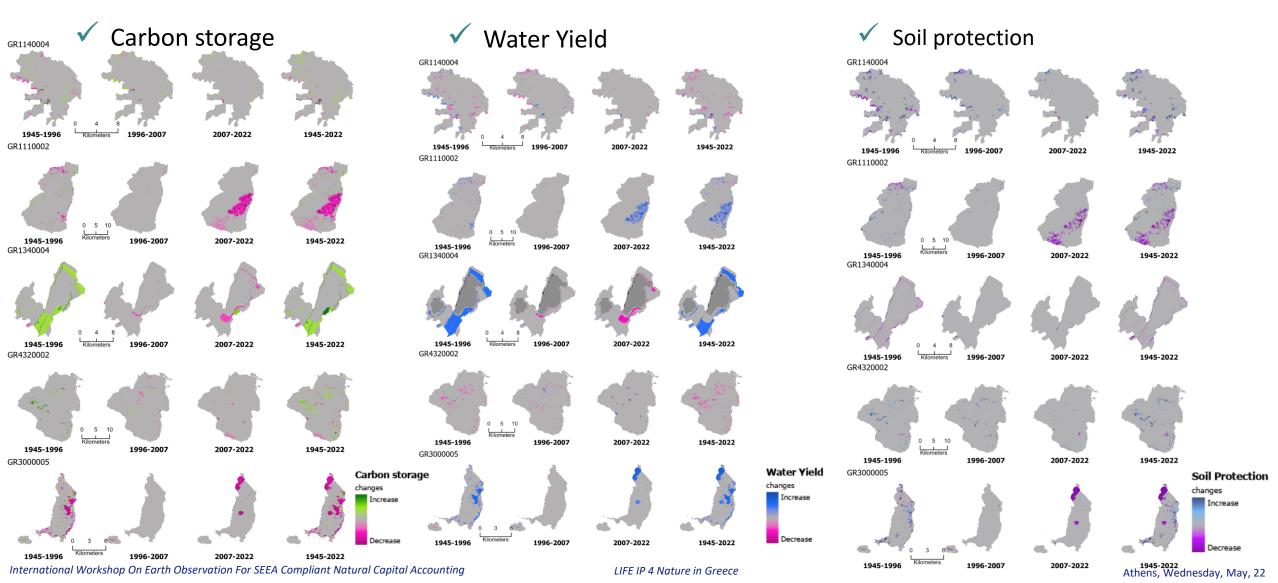


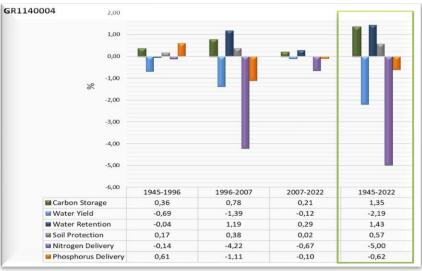
Ecosystem Services analysis

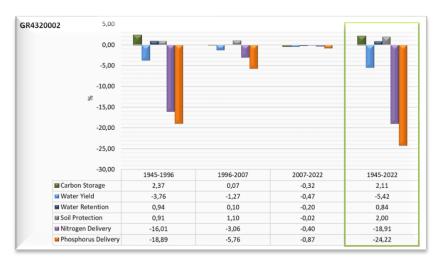

✓ GR 3000005

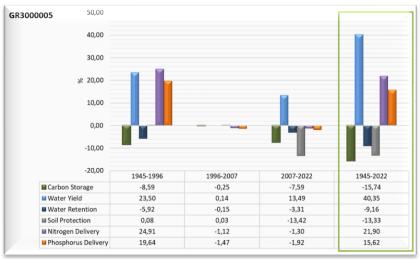


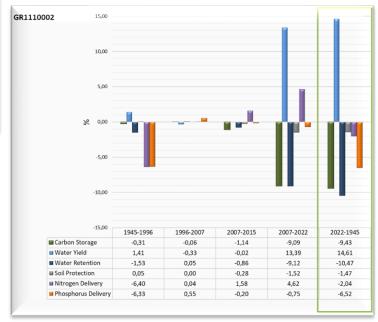




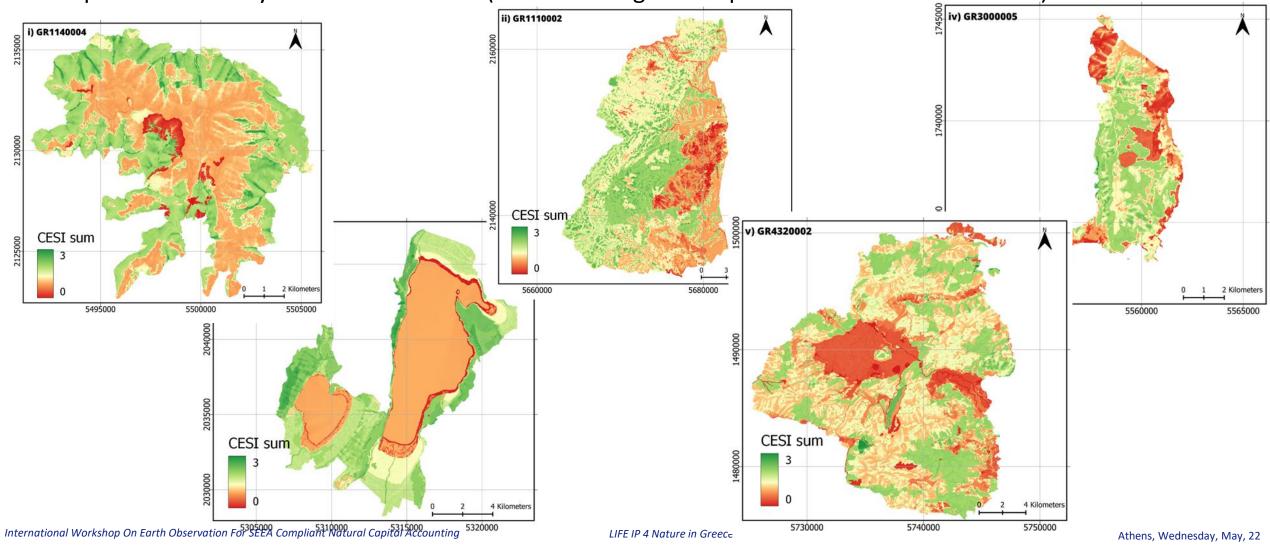

Ecosystem Services changes





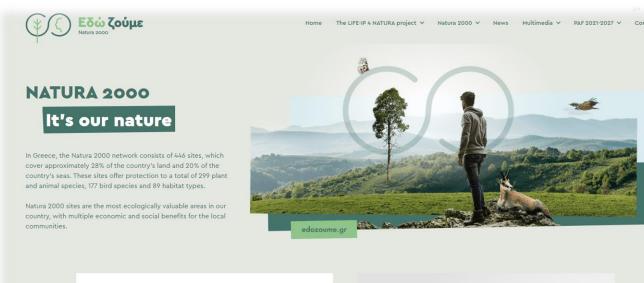

Ecosystem Services changes analysis

Ecosystem Services changes 1945- 2022


	GR1140004	GR1110002	GR1340004	GR3000005	GR4320002
Carbon Storage	1	1	1	1	1
Water Yield	1	1	1		1
Maximum Potential Water Retention	1	1	1	1	1
Soil Protection from Erosion	1	1	1	1	1
Nutrient Delivery (Nitrogen)	1	1	1	1	1
Nutrient Delivery (Phosphorus)	1	1	1	1	1

Ecosystem Services status 2022

✓ Comprehensive ecosystem services index (Carbon storage + Soil protection +Water Retention)



The site

Public Participation Geographic Information System for ecosystem services

LEARN MORE

https://edozoume.gr/

Services

Public Participation GIS

NATURA), presents at a national scale the ecosystem services (such as timber production, climate regulation, erosion regulation, recreation provision, etc..) that Greek ecosystems offer to the public. The ppGIS/webGIS LIFE-IP 4 NATURA was designed and developed within the framework of the LIFE-IP 4 Natura project by the Aristotle University of Thessaloniki - School of Rural and Surveying Engineering, in collaboration with the University of Patras - Department of Biology, the Natural Environment and Climate Change Agency (NECCA), the Greek Ministry of Environment and Energy and WWF Greec

Explore the Dara

Explore the Data

ppGIS/WebGIS' Practical Guide | ppGIS/WebGIS' Technical Report | EN | GR

units concerning the National Parks of the country

The following applications present information on the ecosystem types, ecosystem services, protection zones and other thematic

Public Participation - Web Applications

Public Participation Mobile App

Public Participation - Mobile Applications

Mobile Apps provide direct access to information and tools for you to collect data and help users understand LIFE-IP 4 Natura data. We recommend exploring the apps below to help engage around specific goals and initiatives.

Geospatial tools and data

Story maps

Story Maps the National Parks of Greece

Photographic Contests

Photographic Contests

First Photographic Contest 'Click in Nature'

Second Photographic Contest 'Click in Nature II'

ES-pedia

ES-pedia

LIFE-IP 4 NATURA, is the first unified Life (Life Integrated Project – LIFE-IP) for Greece. It is the most important project in Greece that aims at Environmental protection. More detailed information is provided on the ES-

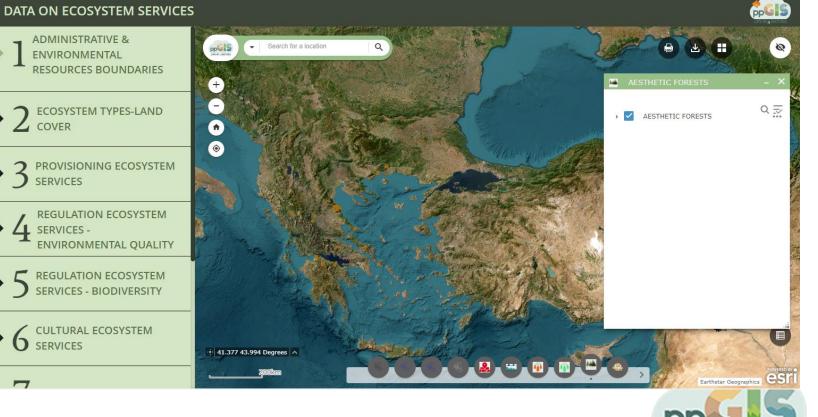
https://gis-natura.gr/

Geotools

Story Map with data organized per category

The following application provides user friendly access to the main WebGIS Data. The data is organized per thematic category and additional tool for querying and downloading are

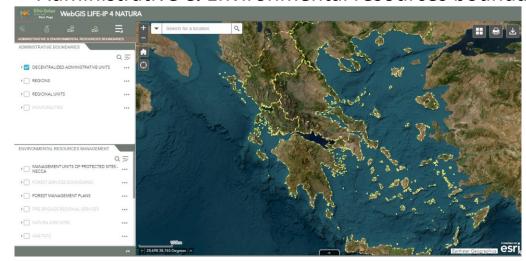
LIFE-IP4 NATURA

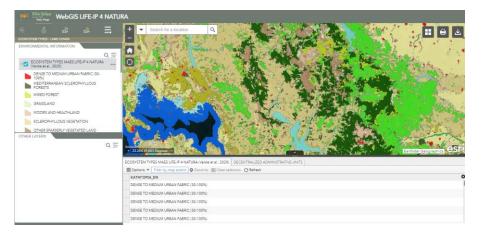

Main WebGIS

The following application provides user friendly access to the main WebGIS Data. The data are categorized and easy to use tools for search and data download are provided. You can navigate in the webGIS features through the manual "Story

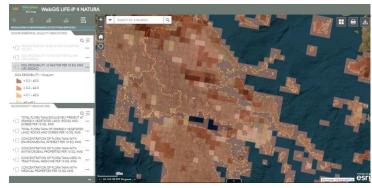
ADMINISTRATIVE &

ENVIRONMENTAL


Story map data organized per category



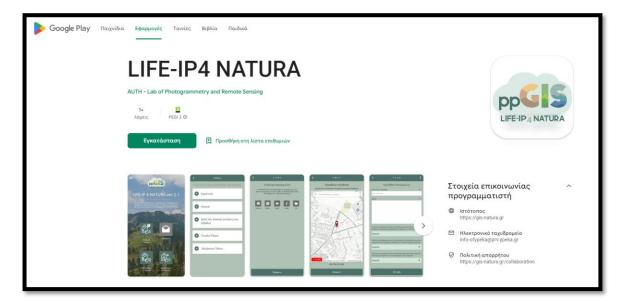
Geotools – WebGIS


✓ Administrative & Environmental resources boundaries

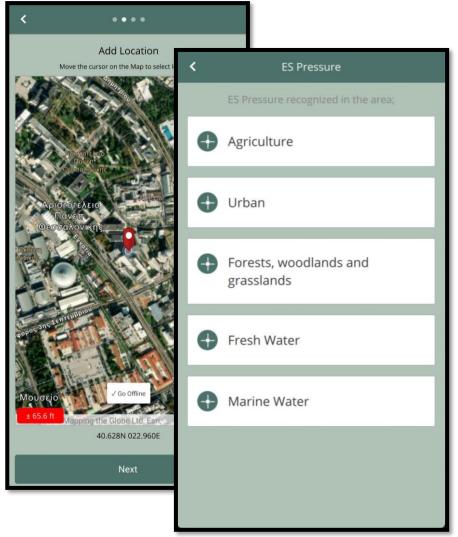
✓ Ecosystem types – land cover

✓ Regulating & maintenance Ecosystem services

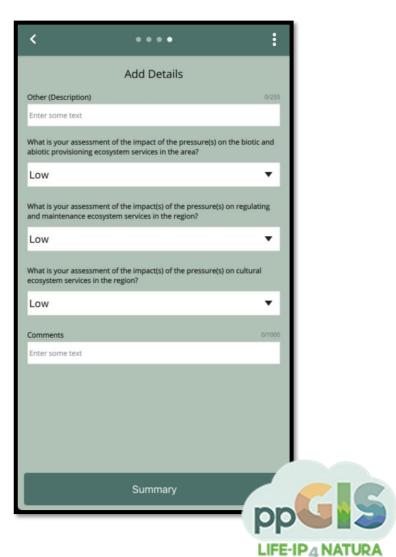
Provisioning Ecosystem services


Cultural Ecosystem services

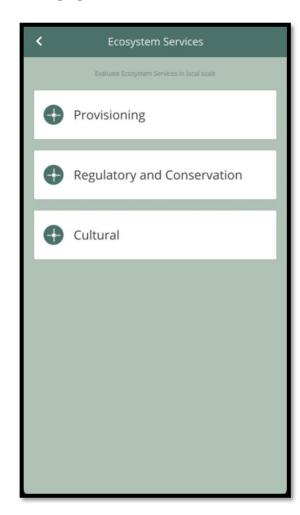
The app

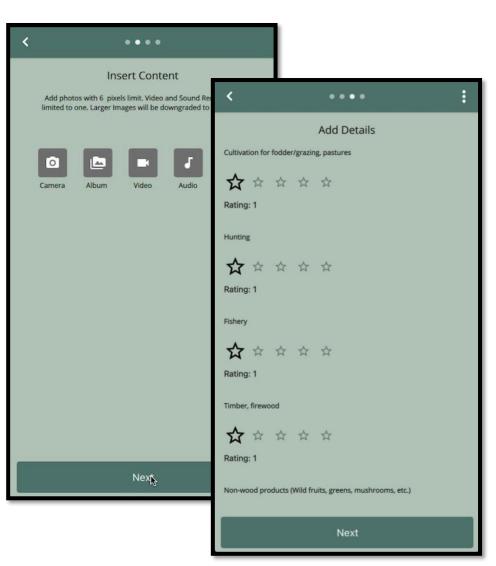


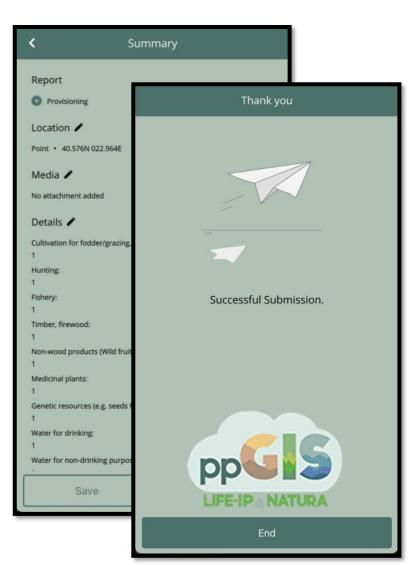




The app







The app

Thank you!

