

Applying the SEEA EA at site-level: lessons learned from two Irish projects

Francesco Martini & Cian White

Trinity College Dublin

Athens 22 May 2024

FORES

For-ES aims to develop decision support tools (DSTs) to potentially help in the management of Coillte forested and non-forested areas, as well as privately owned forests, for **balanced delivery of multiple ecosystem services** using a Natural Capital Accounting (NCA) framework to support modelling.

Coillte is a semi-stateowned forestry company which manages ~7% of Irish land ~50% of its forests (440K ha)

ORES **Creating Extents Accounts**

Area change 2000 - 2018

ORES

Condition Accounts: Selection of variables

Accounting for forest condition in Europe based on an international statistical standard

Joachim Maes, Adrián G. Bruzón, José I. Barredo 🖾, Sara Vallecillo, Peter Vogt, Inés Marí Rivero & Fernando Santos-Martín

Nature Communications 14, Article number: 3723 (2023) Cite this article

Journal of Environmental Management Volume 345, 1 November 2023, 118676

Research article

Modelling and testing forest ecosystems condition account

Adrián G. Bruzón, Patricia Arrogante-Funes 🙎 🖂 , Fernando Santos-Martín

Nature+Energy

The Nature+Energy project is founded on the idea that wind farms have the potential to provide so much more than renewable energy. If managed properly, the biodiversity on onshore wind farms has the potential to not only take even more carbon out of the atmosphere, but also to improve the resilience of ecosystems to climate change and to enhance the provision of ecosystem services, such as pollination, water filtration and habitat provision. There is much potential to enhance nature's contributions to people through improving our understanding of how habitat quality, diversity and connectivity can be enhanced by wind farm land-management for conservatior

Select

condition

indicators

(n = 15)

- Used CORINE to delimit ecosystem assets
- Only for ~2018

The condition accounts are **Work in Progress** and may change

SEEA Ecosy Class	stem Condition Typology	Variables	
Abiotic	Physical state	Soil Drainage	*
		WFD Risk (Rivers & Lakes)	
		NDWI	
	Chemical state	Soil Organic C	k
		PIP-P & PIP-N	k
Biotic	Compositional state	Protected species	
		Biodiversity	>
	Structural state	Tree Cover Density	
		Tree height	1
	Functional state	Vegetation Carbon	>
		NDVI	
		River Q Value	
Landscape	Landscape characteristics	Shape Index	1
		Proportion of PA	1

Condition Accounts: <u>*Reference value*</u>

Condition Accounts: Results

Take-home messages

 Extent. Different Ecosystem Types map are available, each with its own limits: CORINE not ideal, but National Land Cover Map not available for private users (yet?), and perhaps resolution too high for its own good (0.1ha)?

• Condition. Most data are somewhat limited for use at small spatial scale:

- Spatial resolution (different, some too coarse)
- Temporal resolution (intervals not always available, different years)
- Challenging deciding which indicators to select

• Communication with stakeholders is key

bi⊗rbic

At Carbery Group's Shinagh dairy farm, strategies were employed to reduce the carbon footprint and enhance biodiversity.

Mitigation Strategy	2020	2021	2022	2023
White clover inclusion in pasture				
Red clover inclusion in silage				
Multispecies inclusion in pasture				
Protected urea as main fertiliser				
Extend grazing management				
Use native feeds				
Reduce ration				
Feed anti-methanogenic additives				
Chemically amend slurry				
Spread slurry during the spring				
Low emissions slurry spreading				
Reduce replacement rate				
Reduce electricity demand				
Reduce fuel inputs				
Increase production milk solids				

Shinagh Carbon Footprint (kgCO2/kgFPCM)

Shinagh Habitat %: 2020 - 2023

Pasture Semi-Natural Conifer Woodland

Scrub

Bare

Ground

Water

Other

bi@rbic

Supply Chain Dashboard

Search by coo	qu	Q					ط Upload
Code	Coop Code	Created At	Farm Size	Habitat Percentage	Status	Habitat Table	Farm Map
AA5	AAA	07/11/2023 - 04:21	215326	0	Success	Table	* <u>Map</u>
BB1	BBB	07/11/2023 - 11:10	12681.1	5.57	Success	Table	* Map
BB2	BBB	07/11/2023 - 12:41	215326	0	Success	Table	* Map

AA5

Habitat Name	Area	Percentage	Recommended Area Increase	Recommendation	
Semi-Natural Woodland	0	0	0.325664	We recommend an increase of Semi-Natural Woodland by 0.325664 HA	
Hedgerow	0	0	0.421357	We recommend an increase of Hedgerow by 0.421357 HA	
Semi-Natural Grassland	0	0	0.756281	We recommend an increase of Semi-Natural Grassland by 0.756281 HA	
Scrub	0	0	0.262383	We recommend an increase of Scrub by 0.262383 HA	
Conifer	0	0	0.384314	We recommend an increase of Conifer by 0.384314 HA	
				1 to 5 of 5 i< < Page 1 of 1 > >i	

Application

21 May 2024

Habitat Condition

- R Shiny Script
- Open Source
- Each polygon scored between 1 – 10
 - 1 poor for biodiversity
 - 10 good for biodiversity

bi@rbic

CARBERY

Colorado -	
Conefor	Statistic Con
Quantifying the importance of h	abitat patches and links for landscape connectivity

/***********	***************************************
RMSPA	
A R extension	
Morphological S	patial Pattern Analysis
begin	: 2022-04-12
copyright	: (C) 2022 by European Commission JRC
email	: peter.vogt@ec.europa.eu
email	: diego.migliavacca@gmail.com
***********	***************************************

Scoring Woody Features

Woody Features scored using 5 measures:

- Habitat Type (0 2 points)
 - Conifer ~ 0, Scrub ~ 1, Semi Natural Forest ~ 2
- Area (0 2 points)
 - Over 2 ha ~ 2, between 2 and 0.5ha ~ 1, less than 0.5ha ~ 0
- Shape Index (0 2 points)
 - High shape index (lots of edge) ~ 2, medium shape index ~ 1, low shape index ~ 0
 - Rewarding edge here as edges have specific communities of biodiversity
- Connectivity (0 2 points)
 - High connectivity to other patches ~ 2, medium connectivity ~ 1, low connectivity ~ 0
- Degree of Core Habitat
 - > 50% of habitat is core ~ 2, > 50% is a connection between patches ~ 1, > 50% is edge ~ 0
 - Opposite of shape index, rewarding core habitat

Conefor Command Line Call from R

bi@rbic

CARBERY

R Morphological Spatial Pattern Analysis Script from European Commission

			bi⊗rbic
Habitat	Mean Score	Min Score	Max Score
Pasture	1	1	1
Semi-Natural Woodland	6.04	2	9
Conifer	2.85	0	4
Scrub	4	1	5
Hedgerow	7.8	2.5	10
Semi-Natural Grassland	7	7	7
Artificial	1	1	1
Bare Field	1	1	1
Total Habitat Score (0-10)	5.38		

Next Steps And Lessons

bi@rbic

Next steps

- Extent and condition change measurement using ExActR App
- Apply to whole dairy supply chain

Lessons:

- Measuring services directly can be easier than condition
 - Soil carbon
- Is Generic condition score useful?
 - Pasture productivity, biodiversity, water quality all very different processes!

ExActR: A Shiny app for creating ecosystem extent accounts

Anthony Gibbons $\bigcirc 1^*$, Francesco Martini $\oslash 3$, Cian White $\oslash 3$, Jane C. Stout $\oslash 3$, Ian Donohue $\boxdot 2$, Andrew Parnell $\boxdot 1$

FarmZeroC

- Carbon Sequestration
- Carbon Storage
- Water Remediation

Service Maps

bi@rbic

Natural Capital

Natural Capital

	Landcover	Reduction in Nitrogen Loss to Waterways (%)		
	Bare Ground	4		
	Conifer Forest	4.5		
	Hedgerow	5.85		
	Pasture	5		
	Scrub	4.9		
	Semi-Natural Grassland	4.06		
	Semi-Natural Woodland	17		
	Average	5.38		

21 May 2024